Kelas 10 SMASistem Persamaan LinearSistem Persamaan Linear Tiga VariabelSistem Persamaan Linear Tiga VariabelSistem Persamaan LinearALJABARMatematikaRekomendasi video solusi lainnya0149Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...0246Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...0146Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...0155Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua...Teks videoHalo Ko Friends di sini kita punya soal diketahui sistem persamaan linear pada satu per x + 1 per y sama dengan 22 per y min 1 per z sama dengan min 3 + 1 per 1 per Z = 2 maka nilai dari X + Y + Z Itu sama dengan berapa Nah di sini yang pertama kita bisa Misalkan dulu jatuh kita terus misal yaitu pada saat kemudian 1 pria ini sebagai lalu 1% itu sebagai C kemudian disini kita bisa tulis yaitu yang pertama kita bisa pada satu per x + 1 per y sama dengan dua ini kita tulis yaitu a. Kemudian + b = 2 Newton yang pertama untuk persamaan pertama Kemudian yang kedua itu kita bisa tulis yaitu 2 B kemudian MinC = yaitu min 3 nah ini untuk bersamanya kedua selanjutnya disini untuk yang ketiga yaitu kita bisa tulis a kemudian = 2 untuk persamaan yang ketiga Nah yang selanjutnya disini kita bisa cari yaitu yang pertama di sini kita bisa gunakan metode eliminasi Nah jadi disini kita gunakan itu persamaan 3 dengan persamaan yang kedua Nah jadi disini kita bisa tulis yaitu a. Minta itu kan sama dengan yaitu 2 nah kemudian yang selanjutnya disingkat dalam 2 B kemudian = Min 30 kemudian kita bisa kurangi di sini menjadi itu hujan minggu ini menjadi A min 2 B Min C min H = 12 min 3 itu menjadi 5 nah ini menjadi persamaan yang ke-4 Nah kalau di sini kita kurangi lagi yaitu pada A min 2 B = 5 ini dengan yaitu pada persamaan yang pertama yaitu a + b = 2 kemudian kita kurangi di sini menjadi Amin itu menjadi habis kemudian min 2 B min b min 3 b = 5 min 2 itu menjadi yaitu 3 maka banyak itu sama dengan 3 per min 3 Jadi pengen ketemu sama dengan yaitu min 1 nah, kemudian disini kita bisa substitusikan yaitu B = min 1 ke persamaan yaitu yang ke-26 makan di sini menjadi dua kali dengan min 1 Min C = min 36 maka di sini min 2 min y = min 3 maka A min b = min 3 + 2 kerajaan di sini kita kerjakan itu menjadi disini adalah min c = itu min 1 maka itu sama dengan 1 nah, salonnya jangan di sini kita substitusikan pada C = 1 ini ke persamaan yang ketiga Nah jadi disini akan menjadi yaitu a hujan min 1 = 2 maka a = 2 + 100 = 3 nah, kemudian setelah seperti ini kita bisa masukkan ke dalam permisalan nya nah yang pertama di sini permisalan ini kita ubah dulu untuk mencari nilai dari x y z nya Nah jadi di sini pak 1 x = ini bisa kita Ubah menjadi x = 1 per a untuk di sini yang kedua yaitu itu sama dengan 1 per B lalu untuk y = 11 per C nah makan di sini untuk nilai x ini sama dengan yaitu satu per satu kan tadi kita menemukan itu hanya itu kan = 3 Nah jadi di sini untuk X = 130 dan Y = 1 per B nah itu kan adalah disini P = min 1 nah kita tulis di sini min 1 maka di sini itu sama dengan yaitu min 1 Kemudian untuk yang catnya itu = 1 per C Nah itu kan tadi adalah C = 1 nah kita tulis di sini 1 per 1 = 1 maka nilai dari x + y + z = yaitu 1 per 3 kemudian + min 1 lalu + 1 Mah makan di sini tuh kita lihat min 1 dengan pesat ini kan habis maka tersisa itu sama dengan 1 per 3 Nah ketemu jawabannya 1/3 mah disini option yang tepat itu adalah absennya sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Dipost saya yang lalu telah diuraikan bagaimana menyelesaikan suatu sistem persamaan linier dengan k buah anu dengan teknik eliminasi dan substitusi/penggantian. Kali ini akan diterangkan cara lain menyelesaikan hal serupa menggunakan Aturan Cramer (Cramer's Rule). Misalkan diketahui sistem persamaan linier sebagai berikut. Yang ditanyakan adalah nilai-nilai x1, x2, , xk yang [] Berikut ini merupakan soal-soal yang telah disertai pembahasan terkait sistem persamaan linear yang merupakan awal bab dari aljabar linear elementer. Kebanyakan soal diambil dari buku “Dasar-Dasar Aljabar Linear” karya Howard Anton. Semoga dapat dimanfaatkan dengan sebaik-baiknya. Today Quote Hidup bukan tentang mendapatkan apa yang kamu inginkan, tetapi tentang menghargai apa yang kamu miliki. Bagian Pilihan Ganda Soal Nomor 1 Manakah dari persamaan berikut ini yang bukan tergolong persamaan linear? A. $x_1 + 5x_2-\sqrt{2}x_3 = 1$ B. $x_1 + 3x_2 + x_1x_3 = 2$ C. $x_1 = -7x^2 + 3x_3$ D. $\pi x_1-\sqrt2x_2 + \dfrac13x_3 = 7^{1/3}$ E. $x_1 + x_2 + x_3 = \sqrt2$ Pembahasan Persamaan linear dengan variabel peubah $x_1, x_2, \cdots, x_n$ didefinisikan sebagai persamaan dalam bentuk $$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$dengan $a_1, a_2, \cdots, a_n$ merupakan bilangan real yang tidak semuanya nol dan $b$ adalah konstanta real. Perlu diperhatikan bahwa ketika $a_1, a_2, \cdots, a_n$ semuanya bernilai nol, maka ruas kiri tidak mengandung variabel apa pun lagi sehingga tidak memenuhi makna “linear”. Selain itu, persamaan linear tidak melibatkan hasil kali/bagi variabel dan setiap variabelnya harus berpangkat satu. Dari kelima opsi jawaban, semua persamaannya menggunakan variabel $x_1, x_2,$ dan $x_3.$ Persamaan pada opsi B, $x_1 + 3x_2 + \color{red}{x_1x_3} = 2,$ bukanlah persamaan linear karena adanya suku $\color{red}{x_1x_3}$ yang merupakan hasil kali dua variabel. Persamaan lainnya termasuk persamaan linear. Hal yang perlu diingat bahwa koefisien variabel adalah bilangan real dan satu-satunya syarat adalah semua koefisiennya tidak boleh serentak bernilai nol. Contohnya, $\pi x_1$ memenuhi sebagai salah satu suku dalam persamaan linear karena $\pi$ merupakan bilangan real. Jawaban B [collapse] Soal Nomor 2 Jika $k$ adalah sembarang konstanta real, manakah persamaan berikut yang tidak selalu termasuk persamaan linear? A. $x_1 + x_2 + x_3 = \sin k$ B. $kx_1-\dfrac{1}{k}x_2 = 9$ C. $2^kx_1+7x_2-x_3=1$ D. $k + 7x_1 + 2k-10x_2 = 4$ E. $k-10x_1 + \log k+1x_2 + x_3 = 0$ Pembahasan Cek opsi A Konstanta $\sin k$ akan selalu bernilai real berapa pun nilai $k$ yang dipilih. Persamaan ini akan selalu menjadi persamaan linear. Cek opsi B Persamaan pada opsi B, yaitu $kx_1-\dfrac{1}{k}x_2 = 9,$ memberi batas nilai $k \neq 0$ karena adanya koefisien $\dfrac{1}{k}.$ Jadi, $k = 0$ membuat persamaannya menjadi tidak terdefinisi. Persamaan ini tidak selalu termasuk persamaan linear. Cek opsi C Koefisien $2^k$ akan selalu bernilai real berapa pun nilai $k$ yang dipilih. Persamaan ini akan selalu menjadi persamaan linear. Cek opsi D $k$ muncul di dua suku berbeda dan perlu diperiksa apakah ada nilai $k$ yang membuat kedua koefisien variabel menjadi nol. $k + 7$ bernilai nol jika $k = -7,$ tetapi substitusi $k = -7$ pada $2k-10$ tidak membuatnya bernilai nol. Jadi, setiap $k$ diterima dan membuat persamaannya selalu menjadi persamaan linear. Cek opsi E $k$ juga muncul di dua suku berbeda. $k + 10$ bernilai nol jika $k = -10,$ tetapi substitusi $k = -10$ pada $\log k+1$ menghasilkan $\log 10 + 1 = \log 11 \ne 0.$ Selain itu, bentuk $\log k + 1$ juga memenuhi syarat agar nilai logaritma terdefinisi, yaitu numerusnya harus positif, karena jelas bahwa $k + 1 > 0$ untuk setiap bilangan real $k.$ Jadi, persamaan ini akan selalu menjadi persamaan linear. Jawaban B [collapse] Soal Nomor 3 Penyelesaian parametris dari persamaan linear $3x_1-5x_2 + 4x_3 = 7$ adalah $\cdots \cdot$ A. $x_1 = t; x_2 = s; x_3 = \dfrac{5s-3t+7}{4}$ B. $x_1 = s; x_2 = t; x_3 = \dfrac{5s-3t+7}{4}$ C. $x_1 = t; x_2 = s; x_3 = 5s-3t+7$ D. $x_1 = t; x_2 = s; x_3 = \dfrac54s-3t+7$ E. $x_1 = s; x_2 = t; x_3 = \dfrac{3t-5s+7}{4}$ Pembahasan Misalkan $x_1 = t$ dan $x_2 = s$ untuk $t, s \in \mathbb{R}.$ Substitusi pada persamaan $3x_1-5x_2 + 4x_3 = 7$ akan menghasilkan $$\begin{aligned} 3t-5s+4x_3 & = 7 \\ 4x_3 & = 5s-3t+7 \\ x_3 & = \dfrac{5s-3t+7}{4}. \end{aligned}$$Jika permisalannya $x_1 = s$ dan $x_2 = t,$ maka dengan cara yang serupa, kita akan peroleh $$x_3 = \dfrac{5t-3s+7}{4}$$ yang sebenarnya ekuivalen dengan sebelumnya. Jadi, salah satu bentuk penyelesaian parametrisnya adalah $x_1 = t,$ $x_2 = s,$ dan $x_3 = \dfrac{5t-3s+7}{4}.$ Jawaban A [collapse] Soal Nomor 4 Matriks yang diperbesar untuk sistem persamaan $$\begin{cases} x_1 + 2x_2-x_4+x_5 & = 1 \\ 3x_2 + x_3-x_5 & = 2 \\ x_3+7x_4 & = 5 \end{cases}$$adalah $\cdots \cdot$ A. $\begin{pmatrix} 1 & 2 & 0 & -1 & 1 \\ 0 & 3 & 1 & 0 & -1 \\ 0 & 0 & 1 & 7 & 0 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 2 & 0 & -1 & 1 & 1 \\ 0 & 3 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 7 & 0 & 5 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 2 & 0 & -1 & 1 & -1 \\ 0 & 3 & 1 & 0 & -1 & -2 \\ 0 & 0 & 1 & 7 & 0 & -1 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & 3 & 1 & -1 \\ 0 & 1 & 7 & 0 \end{pmatrix}$ E. $\begin{pmatrix} 1 & 2 & -1 & 1 & 1 \\ 0 & 3 & 1 & -1 & 2 \\ 0 & 1 & 7 & 0 & 5 \end{pmatrix}$ Pembahasan Perhatikan bahwa SPL tersebut dapat ditulis ulang seperti berikut. $$\begin{cases} 1x_1 + 2x_2+0x_3-1x_4+1x_5 & = 1 \\ 0x_1+3x_2 + 1x_3+0x_4-1x_5 & = 2 \\ 0x_1 + 0x_2 + 1x_3+7x_4+0x_5 & = 5 \end{cases}$$Dengan melihat koefisien variabel pada setiap persamaan beserta konstantanya, kita dapat membuat matriks yang diperbesar yang setiap barisnya merupakan koefisien variabel yang disusun berurutan, sedangkan kolom terakhirnya merupakan konstanta yang ada di ruas kanan persamaan. $$\begin{pmatrix} 1 & 2 & 0 & -1 & 1 & 1 \\ 0 & 3 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 7 & 0 & 5 \end{pmatrix}$$Jawaban B [collapse] Baca Juga Soal dan Pembahasan – SPLDV Soal Nomor 5 Sistem persamaan linear dengan variabel $x_i$ untuk $i = 1, 2, 3, \cdots$ yang berpadanan dengan matriks yang diperbesar $\begin{pmatrix} 7 & 2 & 1 & -3 & 5 \\ 1 & 2 & 4 & 0 & 1 \end{pmatrix}$ adalah $\cdots \cdot$ A. $\begin{cases} 7x_1 + 2x_2 + x_3-3x_4 + 5x_5 & = 0 \\ x_1 + 2x_2 + 4x_3 + x_4 & = 0 \end{cases}$ B. $\begin{cases} 7x_1 + 2x_2 + x_3-3x_4 & = 5 \\ x_1 + 2x_2 + 4x_3 + x_4 & = 1 \end{cases}$ C. $\begin{cases} 7x_1 + 2x_2 + x_3-3x_4 & = 5 \\ x_1 + 2x_2 + 4x_3 & = 0 \end{cases}$ D. $\begin{cases} 7x_1 + 2x_2 + x_3-3x_4 & = 5 \\ x_1 + 2x_2 + 4x_4 & = 1 \end{cases}$ E. $\begin{cases} 7x_1 + 2x_2 + x_3-3x_4 & = 5 \\ x_1 + 2x_2 + 4x_3 & = 1 \end{cases}$ Pembahasan Diketahui $\begin{pmatrix} 7 & 2 & 1 & -3 & 5 \\ 1 & 2 & 4 & 0 & 1 \end{pmatrix}.$ Perhatikan bahwa matriks yang diperbesar tersebut memiliki $2$ baris dan $5$ kolom, artinya kita punya $2$ persamaan linear dengan $5-1=4$ variabel. Entri kolom ke-$5$ merupakan konstanta persamaan. Dengan demikian, persamaan pertama yang berpadanan dengan baris pertama matriks adalah $$7x_1 + 2x_2 + x_3-3x_4 = 5$$dan persamaan kedua yang berpadanan dengan baris kedua matriks adalah $$x_1 + 2x_2 + 4x_3 + 0x_4 = 1$$yang ekuivalen dengan $$x_1 + 2x_2 + 4x_3 = 1.$$Jadi, sistem persamaan linear yang berpadanan dengan matriks yang diperbesar tersebut adalah $$\boxed{\begin{cases} 7x_1 + 2x_2 + x_3-3x_4 & = 5 \\ x_1 + 2x_2 + 4x_3 & = 1 \end{cases}}$$Jawaban E [collapse] Soal Nomor 6 Persamaan linear dengan variabel $x$ dan $y$ yang mempunyai penyelesaian umum $x = 5 + 2t$ dan $y = t$ untuk $t \in \mathbb{R}$ adalah $\cdots \cdot$ A. $2y + x = 5$ B. $2y-x = 5$ C. $2y + x = -5$ D. $2y-x = -5$ E. $y-2x = 5$ Pembahasan Diketahui penyelesaian umum suatu persamaan linear adalah $$\begin{cases} x & = 5 + 2t && \cdots 1 \\ y & = t && \cdots 2 \end{cases}$$untuk $t \in \mathbb{R}.$ Substitusikan $1$ pada $2$ akan menghasilkan $$\begin{aligned} x & = 5 + 2y \\ 2y-x & = 5. \end{aligned}$$Jadi, persamaan linear yang memiliki penyelesaian umum tersebut adalah $\boxed{2y-x = 5}$ Jawaban B [collapse] Soal Nomor 7 Nilai $k$ agar $\begin{cases} x-y = 3 \\ 2x-2y = k \end{cases}$ memiliki penyelesaian adalah $\cdots \cdot$ A. $k = -6$ B. $k = -3$ C. $k = 0$ D. $k = 3$ E. $k = 6$ Pembahasan Diketahui $$\begin{cases} x-y & = 3 && \cdots 1 \\ 2x-2y & = k && \cdots 2 \end{cases}$$Bagi $2$ pada persamaan $2$ sehingga diperoleh $x-y = \dfrac{k}{3}.$Dengan demikian, ruas kiri dan kanan persamaan $1$ dan $2$ sama sehingga agar SPL memiliki penyelesaian, maka ruas kanannya harus dibuat sama, yakni $$\begin{aligned} \dfrac{k}{2} & = 3 \\ k & = 23 = 6. \end{aligned}$$Jadi, nilai $\boxed{k = 6}$ Jawaban E [collapse] Soal Nomor 8 Sistem persamaan $\begin{cases} x+y+2z = a \\ x + z = b \\ 2x+y+3z = c \end{cases}$ akan konsisten apabila $\cdots \cdot$ A. $c = a + b$ B. $c = a-b$ C. $a = b = c$ D. $a = b + c$ E. $b = a + c$ Pembahasan $$\begin{cases} x+y+2z & = a && \cdots 1 \\ x + z & = b && \cdots 2 \\ 2x+y+3z & = c && \cdots 3 \end{cases}$$Perhatikan bahwa dengan persamaan $3$ adalah kombinasi linear dari persamaan $1$ dan $2,$ yakni $1 + 2 = 3$ sehingga sistem dapat disederhanakan menjadi dua persamaan saja. $$\begin{cases} 2x+y+3z & = a+b && \cdots 4 \\ 2x+y+3z & = c && \cdots 3 \end{cases}$$Perhatikan bahwa ruas kiri kedua persamaan adalah sama. Agar sistem konsisten, yang dalam kasus ini harus memiliki penyelesaian sebanyak takberhingga, maka nilai ekspresi di ruas kanan haruslah sama, yaitu $\boxed{a + b = c}$ Jawaban A [collapse] Baca Juga Soal dan Pembahasan – SPLTV Bagian Uraian Soal Nomor 1 Kurva $y = ax^2 + bx + c$ yang ditunjukkan oleh gambar di bawah melalui titik $x_1, y_1, x_2, y_2,$ dan $x_3, y_3.$ Tunjukkan bahwa koefisien $a, b,$ dan $c$ merupakan penyelesaian dari sistem persamaan linear yang matriks diperbesarnya sebagai berikut. $$\begin{pmatrix} x_1^2 & x_1 & 1 & y_1 \\ x_2^2 & x_2 & 1 & y_2 \\ x_3^2 & x_3 & 1 & y_3 \end{pmatrix}$$ Pembahasan Diketahui kurva $y = ax^2 + bx + c.$ Karena titik $x_1, y_1, x_2, y_2,$ dan $x_3, y_3$ dilalui oleh kurva, maka substitusi nilai $x$ dan $y$ memenuhi persamaan kurva tersebut. Dengan demikian, SPLTV akan terbentuk dengan variabel $a, b,$ dan $c.$ $$\begin{cases} y_1 & = ax_1^2 + bx_1 + c \\ y_2 & = ax_2^2 + bx_2 + c \\ y_3 & = ax_3^2 + bx_3 + c \end{cases}$$Jadi, matriks diperbesarnya adalah sebagai berikut. $$\begin{pmatrix} x_1^2 & x_1 & 1 & y_1 \\ x_2^2 & x_2 & 1 & y_2 \\ x_3^2 & x_3 & 1 & y_3 \end{pmatrix}$$Dengan demikian, penyelesaiannya adalah $a, b,$ dan $c$ dalam kasus ini. [collapse] Baca Juga Soal dan Pembahasan – Soal Cerita Aplikasi SPLTV Soal Nomor 2 Kaji sistem persamaan berikut. $$\begin{cases} ax + by & = k \\ cx + dy & = \ell \\ ex + fy & = m \end{cases}$$Tunjukkan bahwa jika sistem persamaan tersebut konsisten, maka paling tidak satu persamaan dapat diabaikan dari sistem tersebut tanpa mengubah himpunan penyelesaiannya. Pembahasan Pilih sembarang dua dari tiga persamaan pada sistem. Karena sistem persamaan konsisten, artinya pasti memiliki penyelesaian baik tunggal maupun takberhingga, maka dua persamaan yang kita pilih tadi juga konsisten dengan penyelesaian yang sama pula karena merupakan bagian dari sistem. Kita bagi menjadi dua kasus. Kasus 1 Penyelesaiannya tunggal Dua persamaan yang dipilih memiliki penyelesaian tunggal, artinya kita akan menemukan hanya satu pasangan nilai $x, y$ yang memenuhi kedua persamaan sekaligus. Karena sistem konsisten, maka persamaan ketiga yang tidak dipilih juga pasti terpenuhi oleh nilai $x, y$ tersebut. Jadi, himpunan penyelesaiannya tetap $\{x, y\}.$ Kasus 2 Penyelesaiannya sebanyak takberhingga Dua persamaan yang dipilih memiliki penyelesaian sebanyak takberhingga, artinya akan banyak sekali pasangan nilal $x, y$ yang memenuhi kedua persamaan sekaligus. Karena sistem konsisten, maka persamaan ketiga yang tidak dipilih juga pasti terpenuhi oleh semua pasangan nilai $x, y$ tersebut. Jadi, himpunan penyelesaiannya bakal tetap. [collapse] Baca Juga Materi, Soal, dan Pembahasan – Sistem Persamaan Linear dan Kuadrat Soal Nomor 3 Buktikan bahwa jika persamaan linear $x_1 + kx_2 = c$ dan $x_1 + \ell x_2 = d$ mempunyai himpunan penyelesaian yang sama, maka kedua persamaan tersebut identik ekuivalen. Pembahasan Misalkan himpunan penyelesaian dari $x_1 + kx_2 = c$ adalah $x_2 = t$ dan $x_1 = c-kt$ untuk setiap $t \in \mathbb{R}.$ Karena memiliki himpunan penyelesaian yang sama, substitusikan pada persamaan $x_1 + \ell x_2 = d$ sehingga diperoleh $$\begin{aligned} c-kt + \ell t & = d \\ \ell-kt & = d-c. \end{aligned}$$Karena $t = 0$ memenuhi persamaan, maka nilai $d-c$ harusnya nol sehingga $c = d.$ Berikutnya, ketika $t = 1,$ maka $\ell-k1 = 0$ sehingga mengharuskan $k = \ell.$ Jadi, kita telah berhasil membuktikan bahwa $x_1 + kx_2 = c$ dan $x_1 + \ell x_2 = d$ identik ekuivalen karena $k = \ell$ dan $c = d.$ [collapse] Baca Juga Soal dan Pembahasan – Operasi Baris Elementer dan Eliminasi Gauss-Jordan Perhatikansistem persamaan linear berikut : 4 2 2 3 xy xy Jawab : Dari dua persamaan diatas, jika persamaan kedua kita kalikan dengan ½ akan diperoleh : 4 6 xy xy merupakan persamaan yang kontradiksi. Sistem persamaan di atas tidak mempunyai penyelesaian. Dari dua contoh sistem persamaan linear diatas dapat disimpulkan bahwa suatu